Кавитация насоса что это такое - АВТОМОБИЛЬНЫЙ ПОРТАЛ

Кавитация насоса что это такое

Высота столба жидкости над всасывающим патрубком насоса (NPSH) и кавитация

Гидравлический Институт определяет высоту столба жидкости над всасывающим патрубком насоса как совокупную высоту всасывания, измеренную на всасывающем патрубке, с поправкой на давление насыщенных паров перекачиваемой жидкости. Проще говоря, это анализ соотношения сил на всасывающем патрубке насоса, для того, чтобы определить, будет ли жидкость испаряться при минимальном давлении, создающемся в насосе.

Давление насыщенных паров

Давление, которое жидкость оказывает на окружающие ее поверхности, зависит от температуры. Это давление называется давлением насыщенных паров, и оно является уникальной характеристикой любой жидкости, которая возрастает с увеличением температуры. Когда давление насыщенного пара жидкости достигает давления окружающей среды, жидкость начинает испаряться или кипеть. Температура, при которой происходит это испарение, будет понижаться по мере того, как понижается давление окружающей среды.

При испарении жидкость значительно увеличивается в объеме. Один кубический фут воды при комнатной температуре превращается в 1700 кубических футов пара (испарений) при той же самой температуре.

Из вышеизложенного видно, что если мы хотим эффективно перекачивать жидкость, нужно сохранять ее в жидком состоянии. Таким образом, NPSH определяется как величина действительной высоты всасывания насоса, при которой не возникнет испарения перекачиваемой жидкости в точке минимально возможного давления жидкости в насосе.

Требуемое значение NPSH (NPSHR)

Требуемое значение NPSH (NPSHR) — Зависит от конструкции насоса. Когда жидкость проходит через всасывающий патрубок насоса и попадает на направляющий аппарат рабочего колеса, скорость жидкости увеличивается, а давление падает. Также возникают потери давления из-за турбулентности и неровности потока жидкости, т.к. жидкость бьет по колесу.

Центробежная сила лопаток рабочего колеса также увеличивает скорость и уменьшает давление жидкости. NPSHR — необходимый подпор на всасывающем патрубке насоса, чтобы компенсировать все потери давления в насосе и удержать жидкость выше уровня давления насыщенных паров, и ограничить потери напора, возникающие в результате кавитации на уровне 3%. Трехпроцентный запас на падение напора – общепринятый критерий NPSHR , принятый для облегчения расчета. Большинство насосов с низкой всасывающей способностью могут работать с низким или минимальным запасом по NPSHR, что серьезно не сказывается на сроке их эксплуатации. NPSHR зависит от скорости и производительности насосов. Обычно производители насосов предоставляют информацию о характеристике NPSHR.

Допустимый NPSH (NPSHA)

Допустимый NPSH (NPSHA) — является характеристикой системы, в которой работает насос. Это разница между атмосферным давлением, высоты всасывания насоса и давления насыщенных паров. На рисунке изображены 4 типа систем, для каждой приведены формулы расчета NPSHA системы. Очень важно также учесть плотность жидкости и привести все величины к одной единице измерения.

PB = атмосферное давление, в метрах;
VP = Давление насыщенных паров жидкости при максимальной рабочей температуре жидкости;
p=Давление на поверхности жидкости в закрытой емкости, в метрах;
Ls =Максимальная высота всасывания, в метрах;
LH =Максимальная высота подпора, в метрах;
hf= Потери на трение во всасывающем трубопроводе при требуемой производительности насоса, в метрах.

В реальной системе NPSHA определяется с помощью показаний манометра, установленного на стороне всасывания насоса. Применяется следующая формула:
NPSHA= PB – Vp ± Gr + hv, где
Gr = Показания манометра на всасывании насоса, выраженные в метрах, взятые с плюсом (+) , если давление выше атмосферного и с минусом (-), если ниже, с поправкой на осевую линию насоса;
hv = Динамический напор во всасывающем трубопроводе, выраженный в метрах.

Кавитация

Кавитация – это термин, применяющийся для описания явления, возникающего в насосе при недостаточном NPSHA. Давление жидкости при этом ниже значения давления насыщенных паров, и мельчайшие пузырьки пара жидкости двигаются вдоль лопаток рабочего колеса, в области высокого давления пузырьки быстро разрушаются.

Разрушение или «взрыв» на столько быстрое, что на слух это может казаться рокотом, как будто в насос насыпали гравий. В насосах с высокой всасывающей способностью взрывы пузырьков на столько сильные, что лопатки рабочего колеса разрушаются всего в течение нескольких минут. Это воздействие может увеличиваться и при некоторых условиях (очень высокая всасывающая способность) может привести к серьезной эрозии рабочего колеса.

Возникшую в насосе кавитацию очень легко распознать по характерному шуму. Кроме повреждений рабочего колеса кавитация может привести к снижению производительности насоса из-за происходящего в насосе испарения жидкости. При кавитации может снизиться напор насоса и /или стать неустойчивым, также непостоянным может стать и энергопотребление насоса. Вибрации и механические повреждения такие как, например, повреждение подшипников, также могут стать результатом работы насоса с высокой или очень высокой в ссасывающей способностью при кавитации.

Чтобы предотвратить нежелательный эффект кавитации для стандартных насосов с низкой всасывающей способностью, необходимо обеспечить, чтобы NPSHA системы был выше, чем NPSHR насоса. Насосы с высокой всасывающей способностью требуют запаса для NPSHR. Стандарт Гидравлического Института (ANSI/HI 9.6.1) предлагает увеличивать NPSHR в 1,2 — 2,5 раза для насосов с высокой и очень высокой всасывающей способностью, при работе в допустимом диапазоне рабочих характеристик.

Кавитация в насосах

Кавитация – разрыв сплошности жидкости, вызванный образованием парогазовых каверн. Кавитацию у насосов связывают с понижением давления или с повышением температуры жидкости при входе в насос.

Существует 2 вида кавитации: газовая и паровая.

газовая – следствие выделения растворённых в жидкости газов,

паровая – следствие вскипания жидкости.

Газовая кавитация в насосах не существенна, т.к. растворимость газов невелика, а основной вид кавитации – паровая кавитация. Возможность возникновения кавитации оценивается по величине кавитационного запаса насоса.

Кавитационный запас – величина, на которую полный гидродинамический напор жидкости при входе в насос превышает напор насыщенного пара жидкости:

,

1 – полный гидродинамический напор при входе в насос.

2 – величина напора насыщенного пара в жидкости.

Если на пути жидкости к насосу в точке, где давление минимально, кавитационный запас израсходуется на преодолении сопротивлений или на повышения скорости, то начинается кавитация. Жидкость в насосе закипает.

В поршневых насосах кавитация возможна в начале и конце хода поршня. В начале хода поршня кавитация возникает в начале всасывания, когда давление под поршнем минимально. Жидкость закипает, под поршнем образуется парогазовая каверна и происходит отрыв жидкости под поршнем. При дальнейшем ходе поршня, давление под поршнем будет увеличиваться, напор увеличивается, и, когда он станет больше напора насыщенного пара, пар сконденсируется, газы перейдут в растворенное состояние, каверна заполнится жидкостью и в цилиндре произойдет гидравлический удар.

При нагнетании – кавитация в конце нагнетания. В этом случае в связи с понижением давления в цилиндре, нагнетательный клапан закроется, а всасывающий – откроется, жидкость будет поступать через всасывающий клапан, напор будет увеличиваться и, когда он станет выше напора насыщенного пара, произойдет сильный гидравлический удар, который может быть причиной повреждения насоса. Давление гидравлического удара достигает нескольких десятков МПа. Гидравлический удар вызывает эрозионное разрушение поверхности цилиндра и поршня. Кавитация в центробежных насосах имеет особенность – она начинается там, где давление минимально, т.е. на тыльной стороне кромок лопастей вблизи входных кромок. Образующиеся каверны движутся к концам лопастей.

Когда напор станет выше напора насыщенного пара, произойдет гидравлический удар и эрозионное разрушение поверхности лопастей.

Различают три стадии кавитации:

· Начальная – сопровождается микрогидравлическими ударами, т.к. размер каверн небольшой.

· Развитая – сопровождается распределением кавитации на значительную часть сечения потока жидкости и сопровождается сильными гидравлическими ударами.

· Супер кавитация – распространяется на большую часть сечения потока, что приводит к срыву всасывания и прекращению подачи.

· Гидравлические удары в насосе.

· Колебания давления всасывания и нагнетания.

· В поршневых насосах – сильные гидравлические удары.

Методы предупреждения: в процессе технической эксплуатации не следует допускать понижения давления и повышение температуры жидкости.

Кавитацией называется нарушение сплошности потока жидкости, обусловленное появлением в ней пузырьков или полостей, заполненных паром или газом. Кавитация возникает при понижении давления, в результате чего жидкость закипает или из нее выделяется растворенный газ. Обычно эти процессы происходят одновременно. В потоке жидкости такое падение давления происходит в области повышенных скоростей.

Давление, при котором возникает кавитация, зависит от физических свойств жидкости. На практике жидкость быстро проходит через область пониженного давления и газ не успевает выделиться. В таком случае наблюдается паровая кавитация. Последствием кавитации являются следующие явления:

1.Разрушение – эрозия стенок канала. Если конденсация пузырька происходит на стенке канала или вблизи её, то происходит разрушение поверхности – выщербливание материала стенок канала,называемое кавитационоей эрозией. Кавитационная эрозия является наиболее опасным следствием кавитации.

2. Появление шума, треска, ударов и вибрации установки вследствие колебаний жидкости, которые вызваны замыканием полостей, заполненных паром.

3. Уменьшение подачи , напора, мощности и КПД насоса. В лопастных насосах паровая кавитация возникает на тыльных сторонах лопастей вблизи входных кромок, где вследствие местного увеличения скорости потока давление минимально. Давление жидкости на тыльной стороне у входной кромки лопасти зависит от давления во всасывающем патрубке насоса, гидравлических потерь в подводе и местной скорости жидкости.

Давление у входа в насос и в рабочее колесо тем меньше, чем больше высота всасывания и гидравлическое сопротивление во всасывающем трубопроводе и чем меньше давление в опорожниваемом баке. При достаточно больших высоте всасывания и сопротивлении всасывающего трубопровода или при очень малом давлении в опорожниваемом баке давление у входа в рабочее колесо становится настолько малым, что возникает кавитация. Кавитация ограничивает высоту всасывания насоса. Значение, на которое полный напор жидкости во входном патрубке насоса превышает напор, соответствующий давлению её насыщенных паров, называется кавитационным запасом.

,

1 – полный гидродинамический напор при входе в насос.

2 – величина напора насыщенного пара в жидкости.

В поршневых насосах кавитация возможна в начале и конце хода поршня. В начале хода поршня кавитация возникает в начале всасывания, когда давление под поршнем минимально. Жидкость закипает, под поршнем образуется парогазовая каверна и происходит отрыв жидкости под поршнем. При дальнейшем ходе поршня, давление под поршнем будет увеличиваться, напор увеличивается, и, когда он станет больше напора насыщенного пара, пар сконденсируется, газы перейдут в растворенное состояние, каверна заполнится жидкостью и в цилиндре произойдет гидравлический удар.

При нагнетании – кавитация в конце нагнетания. В этом случае в связи с понижением давления в цилиндре, нагнетательный клапан закроется, а всасывающий – откроется, жидкость будет поступать через всасывающий клапан, напор будет увеличиваться и, когда он станет выше напора насыщенного пара, произойдет сильный гидравлический удар, который может быть причиной повреждения насоса. Давление гидравлического удара достигает нескольких десятков МПа. Гидравлический удар вызывает эрозионное разрушение поверхности цилиндра и поршня. Кавитация в центробежных насосах имеет особенность – она начинается там, где давление минимально, т.е. на тыльной стороне кромок лопастей вблизи входных кромок. Образующиеся каверны движутся к концам лопастей.

Когда напор станет выше напора насыщенного пара, произойдет гидравлический удар и эрозионное разрушение поверхности лопастей.

Дата добавления: 2015-04-21 ; просмотров: 38 ; Нарушение авторских прав

Что такое кавитационный запас насоса

Практически все владельцы насосов сталкивались с понятиями кавитации и кавитационного запаса насоса. Следует отметить, что владение правильной информацией по этим вопросам поможет предотвратить многие неприятные поломки, сэкономить деньги и продлить жизнь прибору.

Для того, чтобы понять что такое кавитационный запас насоса, необходимо точно знать определение кавитации.

Определение кавитации

Кавитация вызывает также сильную вибрацию и шум при работе прибора, от чего срок службы многих составляющих резко уменьшается. Именно поэтому кавитация насосов и их устранение — важная задача, к решению которой следует подойти с особым вниманием. Разобравшись с определением, приступаем в выяснению следующего вопроса.

Кавитационный запас насоса

Собственно говоря, это величина, необходимая для того, чтобы сохранять нужный уровень давления в жидкости для избежания возникновения кавитации. Данные можно узнать у компании, выпустившей прибор, которые обозначаются NPSHR. Производить установку и обвязку насоса следует, опираясь на показатели запаса и точные расчеты, выполненные с учетом: местности, уровня воды, давления, напора, потерь на всасывании и т.д.

Кавитация насосов и их устранение – основная проблема многих владельцев насосов. Существует главное правило, следуя которому можно ее избежать. Оно гласит: на входе должно быть большее количество жидкости, чем на выходе. Чтобы достичь этого, можно использовать следующие варианты:

  • поставить всасывающий патрубок большего диаметра;
  • установить прибор неподалеку от источника воды;
  • расположить всасывающую трубу в одной плоскости, желательно без большого количества изгибов или с плавными поворотами, также стоит приобрести трубу из материала, не вызывающего сильного сопротивления;
  • можно попробовать увеличить давление на стороне всасывания путем повышения уровня воды в резервуаре забора или понижением уровня самого насоса.

Также необходимо регулярно проверять работу прибора и при малейших подозрениях появления кавитации предпринимать срочные меры. Так насос прослужит долго без серьезных поломок.

Кавитационным запасом энергии называется превышение полной удельной энергии жидкости над удельной энергией ее насыщенных паров на входе в насос. Этот удельный показатель может быть:

объёмным (на 1 метр кубический)

Массовый (на 1 кг массы)

;

весовой (на 1 ньютон веса)

,

При больших кавитационных запасах кавитационные явления отсутствуют и величины напора и мощности при разных кавитационных запасов не изменяются. Возникновение кавитации приводит к уменьшению напора насоса, мощности и к.п.д. Режим, при котором начинается падение напора и мощности называется первым критическим . Ему соответствует первый критический кавитационный запас Δh кр. При дальнейшем уменьшении кавитационного запаса (т.е. увеличение вакуума на всасывании) происходит резкое уменьшение напора и мощности. Кавитационный запас на этом режиме называется вторым критическим или срывным Δh ср . У тихоходных насосов первый критический режим может не обнаруживаться. В этом случае приходится ограничиваться только вторым критическим режимом.

Работа насоса между первым и вторым критическим режимом может быть допущена, если не предъявляется требование надежности или если работа краткосрочная. Для этого чтобы не получилось, что насос из-за недостаточного учета всех факторов, работает в режиме кавитации назначают небольшое превышение допустимого кавитационного запаса над критическим (Δh доп = φ·h кр, φ = 1,1 ÷ 1,3). Большую величину φ назначают, если расчет допусти-мого кавитационнго запаса ведется по второму критическому запасу.

Зная допустимый кавитационный запас для данного насоса, можно рассчитать допустимую вакуумметрическую и геометрическую высоты всасывания для определенных режимов его работ по формулам:

Р в x – допустимое абсолютное давление на входе в насос, отнесенное к оси насоса, Па;

Р б -барометрическое давление, Па;

Р о — избыточное давление на поверхности всасывания, Па;

Р n -давление парообразования жидкости, Па;

Δh доп – допустимый кавитационный запас энергии, м;

V в x – скорость на входе в насос, м/с;

— суммарные гидравлические потери во всасывающем трубопроводе, м.

В отличие от допустимого кавитационного запаса вакуумметрическая высота всасывания зависит не только от конструкции насоса и режима его работы, но и от рода и температуры жидкости и барометрического давления.

Русский ученый профессор С.С Руднев установил зависимость кавитационного запаса Δh от параметров работы насоса. Он предложил формулу для расчетного определения кавитационного запаса в зависимости от значения параметров работы насоса на номинальном режиме.

,

здесь: n – частота вращения ротора насоса, об/с;

Q – подача насоса, м 3 /с;

С – кавитационный коэффициент быстроходности насоса.

Пользуясь формулой Руднева, получаем:

,

где: n’ об/мин, Δh кр м.ст. жидкости.

В отличие Н sвак и Δh коэффициент С для всех геометрических подобных насосов при их работе на подобных режимах является постоянным.

Коэффициент С используется как основная характеристика кавитационных качеств насосов и называется кавитационным коэффициентом быстроходности.

Выбрав его значение в зависимости от назначения насоса, рассчитывают допустимую критическую высоту всасывания или при известном значении Δh кр определяют максимальную частоту вращения ротора насоса n’.

Для лопастных насосов со средними кавитационными качествами С=800- 1000; насосы с повышенными кавитационными качествами имеют С=1300 и больше.

Вихревые насосы имеют низкие кавитационные качества (С 160х10 6 , это насос с высокой энергией всасывания.

РАБОТА ЦЕНТРОБЕЖНОГО НАСОСА БЕЗ ПРОБЛЕМ С КАВИТАЦИОННЫМ ЗАПАСОМ

Общее
Существует большой количество подробных публикаций о важности значения кавитационного запаса. На практике, однако, ошибки делаются постоянно, с повреждением насоса и даже с выходом из строя в итоге всей системы. Поэтому эти рекомендации предназначены показать, каким образом кавитационный запас системы может быть сделан более подходящим, используя разные параметры, и какие критерии важны при выборе насоса.

NPSH означает допустимый кавитационный запас. Система, в которой, к примеру, холодная вода течет в насос с высоты 1м без перепада давления имеет значение NPSH примерно 11м (не 1м).

NPSH =11 m
A = available

В данном случае, может быть использован только насос со значением NPSHr 10.5м и меньше, в целях безопасности имеется разница 0,5м

NPSH = 10.5 m
R = required

Кавитационный запас системы
Здесь приводится стандартная формула, которая полностью соответствует практике. Использованы последние обозначения в соответствии с DIN 24 260 Часть 1, редакция сентябрь 1986г.

NPSHA (ранее NPSHavail)в метрах, допустимый кавитационный запас
ρ1 (ранее ρs) в барах
Избыточное давление во всасывающем патрубке прямо перед насосом (в случае, если давление ниже атмосферного, значение берется со знаком минус)

ρ amb (ранее ρ B) в барах абс.
Атмосферное давление (стандартно 1,013 бар абс.)

ρv (ранее ρD) в барах абс.
Давление насыщенных паров жидкости при рабочей температуре.

ς в кг/дм3
Плотность жидкости при рабочей температуре.

V1 (ранее VS) в м/с
Скорость перекачиваемой жидкости во всасывающем патрубке.

Эти данные относятся непосредственно к центру всасывающего патрубка. Для упрощения ускорение свободного падения принимается не 9,81 м/с2, а 10,0 м/с2.

NPSH r -кавитационный запас износа

Это значение может быть грубо вычислено, но обычно определяется на испытательной установке, на определенной скорости насоса, при определенном диаметре рабочего колеса и при определенной скорости подачи. Значение кавитационного запаса насоса NPSHR определяется уточнением полного напора насоса при различных подпорах на всасывании. С целью получения различных подпоров на всасывании, давление в питающем резервуаре понижается посредством дроссельного устройства. Сочетание этих методов часто используется с целью достижения пониженного давления.

Чем больше разрежение на входе рабочего колеса, тем большая кавитация происходит. Это ослабляет общей напор насоса. Значение, при котором общий напор насоса падает на 3% в результате такой кавитации принято называть значением кавитационного запаса насоса NPSHR.
Необходимы несколько тестов при одной подачи и при разных давлениях во всасывающем патрубке, прежде чем, посредством повторяющихся измерений, вычислений и т.п., определится 3-х процентное падение напора.

Для определения кривой кавитационного запаса насоса NPSHR, эти измерения делаются при различных подачах и при разных значениях диаметра рабочего колеса. Составление ряда таких кривых требует высоких затрат.

Кавитационный запас системы NPSHa « Предыдущая запись

Высота всасывания насосов и явление кавитации

Жидкость по всасывающему трубопроводу к рабочему колесу насоса подводится под действием разности давления в приемном резервуаре и абсолютного давления в потоке у входа в колесо. Последнее зависит от расположения насоса относительно уровня поверхности жидкости в резервуаре и режима работы насоса. На практике встречаются три основные схемы установки центробежных насосов:

  1. ось насоса выше уровня жидкости в приемном резервуаре (камере) — рис. 2.9, а;
  2. ось насоса ниже уровня жидкости в приемном резервуаре (см. рис. 2.9, б);
  3. жидкость в приемном резервуаре находится под избыточным давлением (см. рис. 2.9,6).

Из уравнения Бернулли для двух сечений (в нашем случае для уровня жидкости в приемном резервуаре 0 — 0 и сечения 1 — 1 на входе в насос следует

где hп.в. — потери во всасывающем трубопроводе;
рa — атмосферное давление, Па;
рв — абсолютное давление на входе в насос, Па;
св — скорость на входе в насос, м/с.

Левая часть уравнения (2.26) представляет собой вакуумметрическую высоту всасывания насоса и измеряется в метрах столба перекачиваемой жидкости.

Рис. 2.9. Схемы установки центробежных насосов

p>Из выражений (2.26) и (2.27) следует:

Если вода в насос поступает с подпором (см. рис. 2.9,б), то

Отрицательное значение Hв указывает на работу насоса с подпором. При работе насоса по схеме, показанной на рис. 2.9, в, выражение вакуумметрической высоты всасывания приобретает вид:

где P — абсолютное давление среды над свободной поверхностью жидкости, Па.

В зависимости от конструкции лопастного насоса геометрическую высоту всасывания отсчитывают по-разному. Для горизонтальных насосов Hг.в — это разность отметок оси насоса и уровня жидкости в приемном резервуаре. Для насосов с вертикальным валом Нг.в отсчитывается от середины входных кромок лопастей рабочего колеса (в многоступенчатых насосах колеса первой ступени) до свободной поверхности жидкости в приемном резервуаре (камере, скважине).

Читайте также  Что такое литиевая смазка

Нормальная работа центробежного насоса обеспечивается в таком режиме, когда абсолютное давление во всех точках его внутренней полости больше давления насыщенных паров перекачиваемой жидкости при данной температуре. Если такое условие не соблюдается, то начинаются явления парообразования и кавитации, которые приводят к уменьшению или даже прекращению подачи насоса (насос «срывает»). Кавитацией называют процессы нарушения сплошности потока жидкости, происходящие там, где местное давление понижается и достигает определенного критического значения. При этом наблюдается образование большого количества мельчайших пузырьков, наполненных парами жидкости и газами, выделившимися из нее. Образование пузырьков внешне похоже на кипение жидкости. Возникшие в результате понижения давления пузырьки увеличиваются в размере и уносятся потоком. При этом наблюдается местное повышение скорости движения жидкости вследствие стеснения поперечного сечения потока выделившимися пузырьками пара или газа.

Попадая в область с давлением выше критического, пузырьки разрушаются, при этом их разрушение происходит с большой скоростью и поэтому сопровождается местным гидравлическим ударом в данной микроскопической зоне. Так как конденсация занимает некоторую область и протекает непрерывно в течение длительного времени, это явление приводит к разрушениям значительных площадей поверхности рабочих колес или направляющих аппаратов. Практически появление кавитации при работе насоса можно обнаружить по характерному потрескиванию в области всасывания, шуму и вибрации насоса. Кавитация сопровождается также химическим разрушением (коррозией) материала насоса под действием кислорода и других газов, выделившихся из жидкости в области пониженного давления.

При одновременном действии коррозии и циклических механических воздействий прочность металлических деталей насоса быстро снижается. При этом воздействие кавитации на металлические детали насоса усиливается, если перекачиваемая жидкость содержит взвешенные абразивные вещества: песок, мелкие частицы шлака и т. п. Под действием кавитации поверхности деталей становятся шероховатыми, губчатыми, что способствует быстрому их истиранию взвешенными веществами. В свою очередь эти вещества, истирая поверхности деталей насоса, способствуют усилению кавитации.

Кавитационному разрушению наиболее подвержены чугун и углеродистая сталь. Более устойчивы в этом отношении бронза и нержавеющие стали. В целях повышениях устойчивости деталей центробежных насосов применяют защитные покрытия. Для этого поверхности деталей наплавляют твердыми сплавами, используют местную поверхностную закалку и другие способы защиты. Однако основной фундаментальной действенной мерой борьбы с преждевременным износом проточной части насосов является предупреждение возможности кавитационных режимов их работы.

Для бескавитационной работы насоса необходимо обеспечить условия, при которых давление на входе в насос «Рв» было бы больше критического, т. е. больше давления насыщенных паров перекачиваемой жидкости «Рп». Для предотвращения явления кавитации необходимо, чтобы удельная энергия потока (отнесенная к оси рабочего колеса насоса) была достаточной для обеспечения скоростей и ускорений в потоке при входе в насос и преодоления гидравлических сопротивлений без падения местного давления до значений, ведущих к образованию кавитации.

Кавитационный запас, т. е. превышение удельной энергии потока энергии, соответствующей давлению насыщенных паров перекачиваемой жидкости, равен:

где h — абсолютное давление на входе в насос.

Величина h зависит от типа и конструкции насоса. Для каждого насоса экспериментально устанавливается минимальное значение кавитационного запаса «h мин». Но в технической характеристике насоса указывается значение допустимого кавитационного запаса, т. е. такого кавитационного запаса, который надежно обеспечивает работу насоса без изменений его основных технических показателей. Допустимый кавитационный запас «hдоп=Kдh». Коэффициент запаса Кд в зависимости от конструкции, типа и назначения насоса принимают в пределах 1,1 — 1,5.
Стандартом ISO 2548 введено иное понятие кавитационного запаса. В документе применяется термин «суммарный напор всасывания при нагнетании» (т.е. при работе насоса). Этот термин обозначается (NPSH). Математически (NPSH) выражается так:

где Z1 — расстояние от плоскости входа до оси рабочего колеса; рв-—избыточное давление на входе в насос.

На входе в насос давление «рв», как правило, является отрицательной величиной. Сравнивая выражение (NPSH) с формулой, описывающей кавитационный запас, очевидно, что оно отличается только наличием члена Z1, который учитывает разность геометрических высот центра тяжести входного патрубка насоса и рабочего колеса. Для больших насосов эта величина может быть существенной.
Из соотношений (2.27) и (2.31) следует, что допустимая вакуумметрическая высота всасывания

где ра — напор, соответствующий атмосферному давлению (приведенная высота атмосферного давления), метры столба перекачиваемой жидкости; hн.п — напор, соответствующий давлению насыщенных паров перекачиваемой жидкости (приведенная высота давления насыщенных паров жидкости), метры столба жидкости.

Допустимая геометрическая высота всасывания вычисляется из соотношений (2.26) и (2.32)

Таким образом, допустимая геометрическая высота всасывания насосной установки равна допустимой вакуумной высоте всасывания насоса минус потери напора во всасывающем трубопроводе. В технической документации на насосы (каталогах, паспортах и пр.) указывается допустимая высота всасывания (или допустимый кавитационный запас) для нормальных условий, т. е. для атмосферного давления 0,1 МПа (что приблизительно соответствует 760 мм рт. ст.) и температуры перекачиваемой жидкости 20°C.

Для воды и сточной жидкости допустимая высота всасывания применительно к реальным условиям эксплуатации насоса вычисляется по соотношению

а допустимая геометрическая высота всасывания — по формуле

где Нв.доп. —номинальная допустимая высота всасывания (по каталогу);
pа/pg — приведенная высота атмосферного давления, м вод. ст.;
0,24 — значение hп.п для воды при t=20С.

Значения приведенной высоты атмосферного давления pа/pg в зависимости от расположения местности над уровнем моря указаны ниже:

Значения высоты давления насыщенных водяных паров hн.п в зависимости от температуры воды приведены ниже:

Потери напора во всасывающем трубопроводе складываются из потерь на трение при движении жидкости по трубе и потерь на местные сопротивления

Наши специалисты всегда рады ответить на любые Ваши вопросы.

Bahr Pump

You are using an outdated browser.
Please upgrade your browser to improve your experience.

  • Главная страница
  • Статьи
  • Кавитация и NPSH (net positive suction head – кавитационный запас)

Кавитация и NPSH (net positive suction head – кавитационный запас)

NPSH (net positive suction head), т. е. кавитационный запас – одно из наиболее проблемных понятий в гидравлике насосов. Во многих статьях говорится о проблемах, вызываемых кавитацией, но, как правило, не раскрывается само это понятие. Ниже упрощённо объясняются связи кавитации и NPSH (кавитационного запаса)

При составлении системы с центробежным насосом и выборе насосов во избежание проблем следует всегда учитывать требование кавитационного запаса (именуемого в дальнейшем NPSH).

Если давление насыщенных паров перекачиваемой жидкости падает ниже абсолютного давления жидкости в зоне входа на лопатки рабочего колеса, то в жидкости образуются пузырьки пара. При работе насоса образовавшиеся пузырьки пара движутся вдоль поверхности лопатки рабочего колеса от центра в сторону. (Рис. 1)

При движении пузырьков таким образом постоянно возрастает давление жидкости, окружающей пузырьки пара. Когда пузырёк достигает зоны, в которой давление окружающей жидкости больше, чем давление внутри пузырька, пузырёк разрушается – коллапсирует. Это явление является противоположностью взрыву. Как правило, таких пузырьков сотни, и они все коллапсируют на лопатке рабочего колеса практически на одной линии.

Такой коллапс создаёт как гидравлические, так и механические проблемы. И для предотвращения данной ситуации и устанавливается изготовителем насоса требование минимально потребного кавитационного запаса, при котором данное явление не возникает или же оно минимально. Это требование обозначается NPSHr, а единицей является метр высоты столба жидкости. (NPSHr – “required” – требуемый кавитационный запас, т. е. необходимый для работы насоса).

Коллапсирующие пузырьки создают специфический звук, будто в насосе движутся камешки. Шум может оказаться настолько сильным, что начнёт оказывать существенное влияние на рабочую среду.

Вторым проявлением возникающих проблем является «выпадение» насоса из графика. Кавитируя, насос создаёт давление значительно ниже ожидаемого, и его производительность падает (Рис. 2)

Третьим проявлением являются механические повреждения, которые происходят в результате кавитации. Кавитация создаёт сильную вибрацию, поскольку чередующиеся на рабочем колесе пузырьки газа и жидкость создают неравномерную нагрузку. Лопаясь, каждый пузырёк создаёт также ударную волну, которая с течением времени разрушает рабочее колесо, постепенно вырывая материал с его поверхности. Скорость такого процесса, т. е. количество удаляемого материала зависит от интенсивности кавитации и от материала рабочего колеса.

Если рабочее колесо состоит из ферритового материала, такого, например, как чугун, то при прокачке воды чугун корродирует и, в то же время, в результате ударной волны происходит эрозия материала. Если используемый материал является более коррозионностойким, как, например, бронза, то мы имеем дело только с эрозией, вызванной ударной волной, однако меньшая прочность этого материала приводит к тому, что на нём образуются следы эрозии, схожие с чеканкой – напоминающие поверхность, обработанную молоточком для чеканки. Материалы с высокой коррозионной стойкостью, такие, как нержавеющая сталь, дуплексная сталь и т. п. благодаря своей твёрдости дольше выдерживают воздействие эрозии от ударной волны, т. е. кавитации, однако с течением времени агрессивная кавитация разрушает любое рабочее колесо и выводит из строя подшипники насоса.

С течением времени кавитация образует в рабочем колесе отверстие, однако ещё до этого возникают механические проблемы, поскольку рабочее колесо больше не является сбалансированным, и вибрация разрушает как подшипники, так и уплотнения.

Выше описан результат, возникающий при нарушении нормы NPSH (допускаемого кавитационного запаса). Ниже приводим примерный подход на практике к значениям NPSH.

NPSHa (NPSH “availible” – располагаемый).

* Используем международно принятый способ написания) рассчитывается по формуле:

NPSHa = p – Hh + Hs – Hvp, где (1)

p – абсолютное давление,

Hh – это потери в трубопроводе от трения

HS – статическая высота уровня жидкости от оси рабочего колеса насоса.

Hvp – давление насыщенных паров жидкости

Все единицы представлены в метрах или в футах водяного столба.

В открытой системе при давлении воздуха 760 мм рт. ст. со стороны нашей атмосферы NPSHa (располагаемый кавитационный запас насоса) составляет 10,33 м.в.ст. Данное давление влияет на уровень жидкости (в формуле p).

На практике используется единица м.в.ст. (метры водяного столба, кратко – метры, англ.: mwc – meter water column)

Необходимо помнить, что если мы оперируем с жидкостями, удельный вес которых не равен единице, то полученный в результате произведенных действий результат следует всегда умножать на удельный вес жидкости.

При выборе насосов необходимо обеспечить, чтобы: NPSHa > NPSHr

(NPSHr – “required” – требуемый кавитационный запас, т. е. необходимый для работы насоса).

Кроме конструкции насоса, NPSHr зависит также от расположения рабочей точки насоса на графике «давление/производительность», и на графиках насосов представляется отдельно графиком «NPSHr/производительность».

На рисунке 3 приведены следующие размеры:

Hs – статическая высота всасывания, Формула 1

Hd – статическое дифференциальное давление насоса.

Абсолютное дифференциальное давление насоса получим, прибавив к данному статическому значению потери в трубопроводе при движении жидкости.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector