Какой химический состав клетки - АВТОМОБИЛЬНЫЙ ПОРТАЛ

Какой химический состав клетки

Химический состав клетки: микро- и макроэлементы

Содержание:

Клетки всех живых организмов имеют сходный химический состав, включающий в себя органические и неорганические вещества. Каждое из таких соединений выполняет в структуре живого определенную функцию, которая связана с их строением.

Химический состав клетки

Большая часть химических элементов, находящихся в Периодической системе Менделеева Д.И., обнаружена внутри живых клеток. Там они находятся не в хаотичном расположении, а образуют органические и неорганические соединения. Хотя соединений неорганического типа внутри «живого» больше, роль органических веществ гораздо значимее!

Областью биологии, занимающейся изучением химического состава клеток, является биохимия. На долю органических веществ выпала функция определения уникальности живого организма на планете.

Макро- и микроэлементы

Все содержащиеся внутри живых клеток элементы объединяют в две большие группы: микроэлементы и макроэлементы.

О микроэлементах

Внутри живых клеток содержится минимальная часть микроэлементов (0,01%), но без этого количества живые организмы не могут полноценно существовать. В категорию микроэлементов относят:

  • фтор (формирует зубную эмаль);
  • йод (синтезирует гормон щитовидной железы);
  • кобальт (составная часть витамина В12);
  • медь (участвует в дыхании);
  • цинк (входит в состав инсулина);
  • магний (входит в состав молекулы хлорофилла у растений);
  • кремний (образование коллагеновых волокон);
  • литий (регулирует процессы размножения).

Условия окружающей среды определяют концентрацию химических элементов внутри живого организма. К примеру, повышенное содержание меди имеется внутри моллюсков, а железа – в позвоночных организмах.

Про макроэлементы

Внутри живого организма содержание макроэлементов составляет около 99%. Наиболее важная роль из них отводится:

  • азоту;
  • углероду;
  • водороду;
  • кислороду.

Это органогенные элементы, так как они образуют главные органические соединения. Остальные (сера, фосфор и прочие) отвечают за происходящие в живом организме процессы.

При избытке либо дефиците в организме микро- и макроэлементов развиваются различные заболевания. Поэтому, периодически следует восполнять концентрацию данных элементов в живом организме, увеличивая или уменьшая их количество в пище.

Неорганические вещества клетки

В категорию неорганических соединений относят минеральные соли и воду.

  1. Минеральные соли.
    • Данные вещества представлены в организмах в нерастворенных либо растворенных формах. Их основной функцией служит поддержание буферных свойств цитоплазмы (постоянство слабощелочной реакции внутри цитоплазмы). Также они ответственны за формирование зубов и костей, участвуют в процессах кроветворения. У растений минеральные соли ответственны за интенсивность процесса фотосинтеза и рост.

  2. Молекулы воды.
    • Благодаря наличию в ее структуре прочных ковалентных связей, вода обладает ярко выраженными свойствами «растворителя».

Органические вещества клетки

К органическим соединениям, находящимся внутри живого относят:

  1. Белки. Данные органические полимеры состоят из аминокислот, образуя в организме первичную, вторичную, третичную и четвертичную структуры строения. Основными их функциями являются: строительная (входят в состав клеточных мембран), защитная (иммунобелки) и транспортная (перенос кислорода гемоглобином).
  2. Жиры. Это липидоподобные соединения, обладающие яркими гидрофобными свойствами. При расщеплении 1 г. жира высвобождается значительное количество энергии(38,9 кДж), идущей на поддержание температуры тела и выполнение движений.
  3. Углеводы. Данные соединения состоят из углерода, кислорода и водорода. Различают следующие группы углеводов: моносахариды (глюкоза, фруктоза, рибоза), дисахариды (сахароза, мальтоза, лактоза) и полисахариды (крахмал, гликоген, целлюлоза). При их расщеплении выделяется много энергии, необходимой для протекания процессов жизнедеятельности. Также, они способны накапливаться как запасные питательные вещества в виде крахмала и гликогена.
  4. Нуклеиновые кислоты. Представлены молекулами рибонуклеиновой (РНК) и дезоксирибонуклеиновой (ДНК) кислот. РНК ответственна за синтез белковых молекул и транспортировку аминокислот. ДНК отвечает за хранение наследственных признаков с их последующей передачей.
  5. Аденозинтрифосфорная кислота. Состоит из: трех остатков фосфорной кислоты, аденина (азотистое основание) и рибозы (пятиосновного сахара). Молекулы аденозинтрифосфорной кислоты АТФ отвечают за идущий в митохондриях синтез энергии и ее хранение.

Взаимосвязь строения и функций неорганических и органических веществ

Выполняемые неорганическими и органическими веществами функции тесно связаны с их строением. Так, покрывающая клетку мембрана (оболочка) содержит в своем составе углеводы, белки и липиды. Находящиеся на поверхности клеточной оболочки белки-рецепторы воспринимают сигналы из окружающего пространства, выполняя тем самым рецепторную функцию.

Содержание липидов (жиров) внутри мембран определяет проницаемость оболочки для одних соединений и непроницаемость для других. Углеводы ответственны за синтез молекул АТФ, запасающих энергию. Аналогично связано строение других компонентов клетки с их составом.

Роль химических веществ в клетке и организме человека

Внутри живых организмов каждое химическое вещество играет определенную роль, благодаря чему весь организм способен полноценно жить. Так, присутствие в клетке магния способствует выработке некоторых ферментов и формированию хлорофилла у растений. Кальций формирует прочность зубов и костей человека, а также активирует работу волокон мышц.

Без серы в организме не смогут образовываться белки, а без ионов натрия и калия в клетку не смогут поступать некоторые соединения.

Функции химических элементов в клетке

Входят в состав воды;

в составе серосодержащих аминокислот, белков.

Химический состав клетки

Каждая клетка содержит множество химических элементов, участвующих в различных химических реакциях. Химические процессы, протекающие в клетке — одно из основных условий её жизни, развития и функционирования. Одних химических элементов в клетке больше, других — меньше.

На атомарном уровне различий между органическим и неорганическим миром живой природы нет: живые организмы состоят из тех же атомов, что и тела неживой природы. Однако соотношение разных химических элементов в живых организмах и в земной коре сильно различается. Кроме того, живые организмы могут отличаться от окружающей их среды по изотопному составу химических элементов.

Условно все элементы клетки можно разделить на три группы.

Содержание

Макроэлементы

К макроэлементам относят кислород (65—75 %), углерод (15—18 %), водород (8—10 %), азот (2,0—3,0 %), калий (0,15—0,4 %), сера (0,15—0,2 %), фосфор (0,2—1,0 %), хлор (0,05—0,1 %), магний (0,02—0,03 %), натрий (0,02—0,03 %), кальций (0,04—2,00 %), железо (0,01—0,015 %). Такие элементы, как C, O, H, N, S, P входят в состав органических соединений.

Углерод — входит в состав всех органических веществ; скелет из атомов углерода составляет их основу. Кроме того, в виде CO2 фиксируется в процессе фотосинтеза и выделяется в ходе дыхания, в виде CO (в низких концентрациях) участвует в регуляции клеточных функций, в виде CaCO3 входит в состав минеральных скелетов.

Кислород — входит в состав практически всех органических веществ клетки. Образуется в ходе фотосинтеза при фотолизе воды. Для аэробных организмов служит окислителем в ходе клеточного дыхания, обеспечивая клетки энергией. В наибольших количествах в живых клетках содержится в составе воды.

Водород — входит в состав всех органических веществ клетки. В наибольших количествах содержится в составе воды. Некоторые бактерии окисляют молекулярный водород для получения энергии.

Азот — входит в состав белков, нуклеиновых кислот и их мономеров — аминокислот и нуклеотидов. Из организма животных выводится в составе аммиака, мочевины, гуанина или мочевой кислоты как конечный продукт азотного обмена. В виде оксида азота NO (в низких концентрациях) участвует в регуляции кровяного давления.

Сера — входит в состав серосодержащих аминокислот, поэтому содержится в большинстве белков. В небольших количествах присутствует в виде сульфат-иона в цитоплазме клеток и межклеточных жидкостях.

Фосфор — входит в состав АТФ, других нуклеотидов и нуклеиновых кислот (в виде остатков фосфорной кислоты), в состав костной ткани и зубной эмали (в виде минеральных солей), а также присутствует в цитоплазме и межклеточных жидкостях (в виде фосфат-ионов).

Магний — кофактор многих ферментов, участвующих в энергетическом обмене и синтезе ДНК; поддерживает целостность рибосом и митохондрий, входит в состав хлорофилла. В животных клетках необходим для функционирования мышечных и костных систем.

Кальций — участвует в свёртывании крови, а также служит одним из универсальных вторичных посредников, регулируя важнейшие внутриклеточные процессы (в том числе участвует в поддержании мембранного потенциала, необходим для мышечного сокращения и экзоцитоза). Нерастворимые соли кальция участвуют в формировании костей и зубов позвоночных и минеральных скелетов беспозвоночных.

Натрий — участвует в поддержании мембранного потенциала, генерации нервного импульса, процессах осморегуляции (в том числе в работе почек у человека) и создании буферной системы крови.

Калий — участвует в поддержании мембранного потенциала, генерации нервного импульса, регуляции сокращения сердечной мышцы.Содержится в межклеточных веществах.

Хлор — поддерживает электронейтральность клетки.

Микроэлементы

К микроэлементам, составляющим от 0,001 % до 0,000001 % массы тела живых существ, относят ванадий, германий, йод (входит в состав тироксина, гормона щитовидной железы), кобальт (витамин В12), марганец, никель, рутений, селен, фтор (зубная эмаль), медь, хром, цинк

Цинк — входит в состав ферментов, участвующих в спиртовом брожении, в состав инсулина

Медь — входит в состав окислительных ферментов, участвующих в синтезе цитохромов.

Селен — участвует в регуляторных процессах организма.

Ультрамикроэлементы

Ультрамикроэлементы составляют менее 0,0000001 % в организмах живых существ, к ним относят золото, серебро оказывают бактерицидное воздействие, ртуть подавляет обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Так же к ультрамикроэлементам относят платину и цезий. Некоторые к этой группе относят и селен, при его недостатке развиваются раковые заболевания. Функции ультрамикроэлементов еще мало понятны.

Молекулярный состав клетки

Соединения
НеорганическиеОрганические
Вода
Минеральные соли
70—80 %
1,0—1,5 %
Белки
Углеводы
Жиры
Нуклеиновые кислоты
АТФ, соли и др. вещества
10—20 %
0,2—2,0 %
1—5 %
1,0—2,0 %
0,1—0,5 %

См. также

  • Биологически значимые элементы
  • Клетка
  • Сравнение строения клеток бактерий, растений и животных

  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
  • Проверить достоверность указанной в статье информации.
  • Исправить статью согласно стилистическим правилам Википедии.
  • Проставив сноски, внести более точные указания на источники.
  • Добавить иллюстрации.

Wikimedia Foundation . 2010 .

  • Римское право
  • Федеральное космическое агентство России

Полезное

Смотреть что такое «Химический состав клетки» в других словарях:

Строение и химический состав бактериальной клетки — Общая схема строения бактериальной клетки показана на рисунке 2. Внутренняя организация бактериальной клетки сложна. Каждая систематическая группа микроорганизмов имеет свои специфические особенности строения. Клеточная стенка.… … Биологическая энциклопедия

Строении клетки красных водорослей — Своеобразие внутриклеточного строения красных водорослей складывается как из особенностей обычных клеточных компонентов, так и из наличия специфических внутриклеточных включений. Клеточные оболочки. В клеточных оболочках красных… … Биологическая энциклопедия

Серебро химический элемент — (Argentum, argent, Silber), хим. знак Ag. С. принадлежит к числу металлов, известных человеку еще в глубокой древности. В природе оно встречается как в самородном состоянии, так и в виде соединений с другими телами (с серой, напр. Ag 2S… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Серебро, химический элемент — (Argentum, argent, Silber), хим. знак Ag. С. принадлежит к числу металлов, известных человеку еще в глубокой древности. В природе оно встречается как в самородном состоянии, так и в виде соединений с другими телами (с серой, напр. Ag2S серебряный … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Клетка — У этого термина существуют и другие значения, см. Клетка (значения). Клетки крови человека (РЭМ) … Википедия

Комплексный справочник по Биологии — Термин Биология был предложен выдающимся французким естествоиспытателем и эволюционистом Жаном Батистом Ламарком в 1802 году для обозначения науки о жизни как особым явлении природы. Сегодня биология представляет собой комплекс наук, изучающих… … Википедия

Живая клетка — Клетка элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию,… … Википедия

Клетка (биология) — Клетка элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию,… … Википедия

цитохимия — (цито + химия) раздел цитологии, изучающий химический состав клетки и ее компонентов, а также обменные процессы и химические реакции, которые лежат в основе жизнедеятельности клетки … Большой медицинский словарь

Цитохи́мия — (Цито + химия) раздел цитологии, изучающий химический состав клетки и ее компонентов, а также обменные процессы и химические реакции, которые лежат в основе жизнедеятельности клетки … Медицинская энциклопедия

2.3 Химический состав клетки. Макро- и микроэлементы


Видеоурок 2: Строение, свойства и функции органических соединений Понятие о биополимерах

Лекция: Химический состав клетки. Макро- и микроэлементы. Взаимосвязь строения и функций неорганических и органических веществ

макроэлементы, содержание которых не ниже 0,01%;

микроэлементы – концентрация, которых составляет меньше 0,01%.

В любой клетке содержание микроэлементов составляет менее 1%, макроэлементов соответственно — больше 99%.

Натрий, калий и хлор – обеспечивают многие биологические процессы – тургор (внутреннее клеточное давление), появление нервных электрических импульсов.

Азот, кислород, водород, углерод. Это основные компоненты клетки.

Фосфор и сера – важные компоненты пептидов (белков) и нуклеиновых кислот.

Кальций – основа любых скелетных образований – зубов, костей, раковин, клеточных стенок. Также, участвует в сокращении мышц и свертывании крови.

Магний – компонент хлорофилла. Участвует в синтезе белков.

Железо – компонент гемоглобина, участвует в фотосинтезе, определяет работоспособность ферментов.

Микроэлементы содержатся в очень низких концентрациях, важны для физиологических процессов:

Цинк – компонент инсулина;

Медь – участвует в фотосинтезе и дыхании;

Кобальт – компонент витамина В12;

Йод – участвует в регуляции обмена веществ. Он является важным компонентом гормонов щитовидной железы;

Фтор – компонент зубной эмали.

Нарушение баланса концентрации микро и макроэлементов приводит к нарушениям метаболизма, развитию хронических болезней. Недостаток кальция – причина рахита, железа – анемия, азота – дефицит протеинов, йода – снижение интенсивности метаболитических процессов.

Расмотрим связь органических и неорганических веществ в клетке, их строение и функции.

В клетках содержится огромное количество микро и макромолекул, относящихся к разным химическим классам.

Неорганические вещества клетки

Вода . От общей массы живого организма она составляет наибольший процент – 50-90% и принимает участие практически во всех процессах жизнедеятельности:

капиллярных процессах, так как является универсальным полярным растворителем, влияет на свойства межтканевой жидкости, интенсивности обмена веществ. По отношению к воде все химические соединения делятся на гидрофильные (растворимые) и липофильные (растворимые в жирах).

От концентрации ее в клетке зависит интенсивность обмена веществ – чем больше воды, тем быстрее происходят процессы. Потеря 12% воды человеческим организмом – требует восстановления под наблюдением врача, при потере 20% – наступает смерть.

Минеральные соли. Содержатся в живых системах в растворенном виде (диссоциировав на ионы) и нерастворенном. Растворенные соли участвуют в:

переносе веществ сквозь мембрану. Катионы металлов обеспечивают «калиево-натриевый насос», изменяя осмотическое давление клетки. Из-за этого вода с растворенными в ней веществами устремляется в клетку либо покидает ее, унося ненужные;

формировании нервных импульсов, имеющих электрохимическую природу;

входят в состав белков;

фосфат-ион – компонент нуклеиновых кислот и АТФ;

карбонат-ион – поддерживает Ph в цитоплазме.

Нерастворимые соли в виде цельных молекул образуют структуры панцирей, раковин, костей, зубов.

Органические вещества клетки

Общая черта органических веществ – наличие углеродной скелетной цепи. Это биополимеры и небольшие молекулы простой структуры.

Основные классы, имеющиеся в живых организмах:

Углеводы . В клетках присутствуют различные их виды — простые сахара и нерастворимые полимеры (целлюлоза). В процентном отношении доля их в сухом веществе растений — до 80%, животных – 20%. Они играют важную роль в жизнеобеспечении клеток:

Фруктоза и глюкоза (моносахара) – быстро усваиваются организмом, включаются в метаболизм, являются источником энергии.

Рибоза и дезоксирибоза (моносахара) – один из трех основных компонентов состава ДНК и РНК.

Лактоза (относится к дисахарам) – синтезируется животным организмом, входит в состав молока млекопитающих.

Сахароза (дисахарид) – источник энергии, образуется в растениях.

Мальтоза (дисахарид) – обеспечивает прорастание семян.

Также, простые сахара выполняют и другие функции: сигнальную, защитную, транспортную.
Полимерные углеводы – это растворимый в воде гликоген, а также нерастворимые целлюлоза, хитин, крахмал. Они играют важную роль в метаболизме, осуществляют структурную, запасающую, защитную функции.

Липиды или жиры. Они нерастворимы в воде, но хорошо смешиваются между собой и растворяются в неполярных жидкостях (не имеющих в составе кислород, например – керосин или циклические углеводороды относятся к неполярным растворителям). Липиды необходимы в организме для обеспечения его энергией – при их окислении образуется энергия и вода. Жиры очень энергоэффективны – с помощью выделяющихся при окислении 39 кДж на грамм можно поднять груз весом в 4 тонны на высоту в 1 м. Также, жир обеспечивает защитную и теплоизоляционную функцию – у животных толстый его слой способствует сохранению тепла в холодный сезон. Жироподобные вещества предохраняют от намокания перья водоплавающих птиц, обеспечивают здоровый лоснящийся вид и упругость шерсти животных, выполняют покровную функцию у листьев растений. Некоторые гормоны имеют липидную структуру. Жиры входят в основу структуры мембран.


Белки или протеины
являются гетерополимерами биогенной структуры. Они состоят из аминокислот, структурными единицами которых являются: аминогруппа, радикал, и карбоксильная группа. Свойства аминокислот и их отличия друг от друга определяют радикалы. За счет амфотерных свойств – могут образовывать между собой связи. Белок может состоять из нескольких или сотен аминокислот. Всего в структуру белков входят 20 аминокислот, их комбинации определяют разнообразие форм и свойств протеинов. Около десятка аминокислот относятся к незаменимым – они не синтезируются в животном организме и их поступление обеспечивается за счет растительной пищи. В ЖКТ белки расщепляются на отдельные мономеры, используемые для синтеза собственных белков.

Структурные особенности белков:

первичная структура – аминокислотная цепочка;

вторичная – скрученная в спираль цепочка, где образуются между витками водородные связи;

третичная – спираль или несколько их, свернутые в глобулу и соединенные слабыми связями;

четвертичная существует не у всех белков. Это несколько глобул, соединенных нековалентными связями.

Прочность структур может нарушаться, а затем восстанавливаться, при этом белок временно теряет свои характерные свойства и биологическую активность. Необратимым является только разрушение первичной структуры.

Белки выполняют в клетке множество функций:

ускорение химических реакций (ферментативная или каталитическая функция, причем каждый из них отвечает за конкретную единственную реакцию);

транспортная – перенос ионов, кислорода, жирных кислот сквозь клеточные мембраны;

защитная – такие белки крови как фибрин и фибриноген, присутствуют в плазме крови в неактивном виде,в месте ранений под действием кислорода образуют тромбы. Антитела — обеспечивают иммунитет.

структурная – пептиды входят частично или являются основой клеточных мембран, сухожилий и других соединительных тканей, волос, шерсти, копыт и ногтей, крыльев и внешних покровов. Актин и миозин обеспечивают сократительную активность мышц;

регуляторная – белки-гормоны обеспечивают гуморальную регуляцию;

энергетическая – во время отсутствия питательных веществ организм начинает расщеплять собственные белки, нарушая процесс собственной жизнедеятельности. Именно поэтому после длительного голода организм не всегда может восстановиться без врачебной помощи.

Нуклеиновые кислоты. Их существует 2 – ДНК и РНК. РНК бывает нескольких видов – информационная, транспортная, рибосомная. Открыты щвейцарцем Ф. Фишером в конце 19-го века.

ДНК – дезоксирибонуклеиновая кислота. Содержится в ядре, пластидах и митохондриях. Структурно является линейным полимером, образующим двойную спираль из комплементарных цепочек нуклеотидов. Представление о ее пространственной структуре было создано в 1953 г американцами Д. Уотсоном и Ф. Криком.

Мономерные ее единицы —нуклеотиды, имеющие принципиально общую структуру из:

азотистого основания (принадлежащие к группе пуриновых – аденин, гуанин, пиримидиновых – тимин и цитозин.)

В структуре полимерной молекулы нуклеотиды объединены попарно и комплементарно, что обусловлено разным количеством водородных связей: аденин+тимин – две, гуанин+цитозин – водородных связей три.

Порядок расположения нуклеотидов кодирует структурные последовательности аминокислот белковых молекул. Мутацией называются изменения порядка нуклеотидов, так как будут кодироваться белковые молекулы другой структуры.

РНК – рибонуклеиновая кислота. Структурными особенностями ее отличия от ДНК являются:

вместо тиминового нуклеотида – урациловый;

рибоза вместо дезоксирибозы.

Транспортная РНК – это полимерная цепочка, которая в плоскости свернута в виде листочка клевера, основной ее функцией является доставка аминокислоты к рибосомам.

Матричная (информационная) РНК постоянно образуется в ядре, комплементарно какому-либо участку ДНК. Это — структурная матрица, на основе ее строения на рибосоме будет собираться белковая молекула. От всего содержания молекул РНК этот тип составляет 5%.

Рибосомная – отвечает за процесс составления молекулы белка. Синтезируется на ядрышке. Ее в клетке 85%.

АТФ – аденозинтрифосфорная кислота. Это нуклеотид, содержащий:

Химический состав клетки — кратко о свойствах, особенностях и функциях веществ

Принципы классификации

Изучив живую природу, ученые пришли к выводу, что организмы состоят из тех же атомов, что и тела неживой материи. Соотношение различных веществ в живых телах и земле существенно отличается. В состав клетки входят химические элементы, которые образуют органические и неорганические компоненты. Уникальность химического состава связана с незначительным количеством первых. Их синтез происходит в процессе жизнедеятельности, что обеспечивает нормальное развитие организма. Элементы, входящие в химический состав, классифицируются на 3 группы:

  • ультрамикроэлементы;
  • микроэлементы;
  • макроэлементы.

К ультрамикроэлементам относятся золото, серебро, ртуть. Два первых компонента оказывают на организм бактерицидное воздействие. Ртуть необходима для подавления обратного всасывания воды в канальцах почек. Она воздействует на ферменты. Другие вещества, которые относятся к ультрагруппе:

  • платина;
  • цезий.

На долю микроэлементов приходится от 0,001% массы тела человека. Группа состоит из кобальта, никеля, селена, меди, цинка, хрома. Особенность цинка заключается в наличии в его составе ферментов, которые способствуют спиртовому брожению. К окислительным ферментам относится медь. Она участвует в синтезе цитохромов. За регуляцию процессов, протекающих в организме, отвечает селен.

Описание макропоказателей

Макроэлементы представлены в виде кислорода, водорода, калия, азота, серы, натрия, железа и других веществ. Некоторые компоненты являются минералами, органическими соединениями. К примеру, углерод состоит из атомов и выделяется при дыхании в виде CO2. В минералах он присутствует в незначительном количестве.

К органическим компонентам относится кислород. Он образуется при фотосинтезе. Аэробными организмами он используется в качестве окислителя при дыхании, обеспечивая их энергией. Особенности строения других макроэлементов:

  1. Водород. Находится в органических органоидах. В максимальной концентрации присутствует в воде. Некоторые бактерии способствуют проведению окислительной реакции.
  2. Азот. Присутствует в белках, мономерах и нуклеиновых кислотах. У животных он выводится с мочевиной, гуанином, аммиаком. В комплексе с оксидом азота вещество регулирует кровяное давление.
  3. Сера. Содержится в аминокислотах и белках. В незначительном количестве присутствует в цитоплазме и межклеточной жидкости.

В АТФ находится фосфор, который способствует укреплению эмали и костей. Его содержание наблюдается в цитоплазме и межклеточной жидкости.

Дополнительные компоненты

За синтез ДНК и энергетический обмен отвечает магний. Он поддерживает целостность внутриклеточных структур, включая митохондрии. У животных магний отвечает за функционирование мышечных масс. С помощью кальция обеспечивается свертываемость крови. Он считается вторичным посредником в регулировке внутриклеточных процессов, обеспечивая:

  • поддержку состава мембран;
  • образование минеральных скелетов.

За мембранный потенциал отвечает натрий. Одновременно он способствует генерации нервного импульса и осморегуляции почек. К сокращению миокарда приводит калий. Он содержится и в межклеточном пространстве. Хлор поддерживает электронейтральность элементарных тел. В молекулярный состав клеток входят следующие компоненты:

  • вода;
  • белки;
  • углеводы;
  • минеральные соли;
  • АТФ.

Основная составляющая биополимеров — макроэлементы. Микрокомпоненты принимают активное участие в обменных процессах. Они считаются составными веществами минералов, которые присутствуют в клетках в виде анионов и катионов. За счет их соотношения определяется щелочная среда. Чаще она носит слабый характер, так как концентрация минеральных солей не изменяется.

При нарушении баланса между компонентами клетки развиваются патологические состояния. Для нормализации работы всего организма рекомендуется пройти комплексное обследование. На основе полученных результатов врач ставит диагноз и назначает адекватное лечение.

Химическая организация клеток живых организмов — состав, вещества и функции

  1. Таблица. Основные химические элементы в клетках живых организмов
  2. Значение органических соединений в клетке
  3. Роль воды в клетке

Элементы — это основные единицы материи. Из 92 стабильных элементов, найденных на Земле, только 25 встречаются в организмах живых существах и 16–18 являются жизненно важными. Элементы, которые, как известно, имеют универсальное значение для всех живых организмов, включают водород (H), кислород (O), углерод (C), азот (N), кальций (Ca), фосфор (P), калий (K), серу (S), хлор (Cl), натрий (Na), магний (Mg) и железо (Fe).

Все элементы, которые входят в химический состав организма, в зависимости от их доли содержания в клетке, можно разделить на четыре группы:

Органогены (биоэлементы) – химические элементы, которые входят в состав всех органических соединений и составляют примерно 98% от массы клетки:

  • Водород – компонент воды и органических молекул
  • Углерод – основа органических молекул
  • Азот – компонент белков и нуклеиновых кислот
  • Кислород – необходим для клеточного дыхания

Макроэлементы – элементы, содержащиеся в клетке в значительно меньших количествах – десятые и сотые доли процента:

  • Натрий – важен в функционировании нервов
  • Магний – компонент хлорофилла
  • Фосфор – компонент нуклеиновых кислот, костей и зубов
  • Сера – компонент некоторых белков и витаминов
  • Хлор – главный анион в жидкостях вне клетки
  • Калий – важен в функционировании нервов
  • Кальций – кофактор ферментов, запускающий сокращение мышц и компонент костей, зубов и клеточных стенок растений

Микроэлементы – элементы, составляющие от 0,001% до 0,000001% массы живого организма:

  • Железо – кофактор многих ферментов и составная часть гемоглобина
  • Йод – участвует в обменных процессах

Ультрамикроэлементы – на их долю приходится менее 0,000001% от массы живого организма. К этой группе принадлежат золото, серебро, обладающие бактерицидным воздействием, ртуть, препятствующая обратному всасыванию воды в почечных канальцах, влияя на ферменты.

Химические соединения в клетке также могут быть разделены на две основные группы: органические и неорганические соединения.

Органические соединения являются химическими соединениями, которые содержат углерод. К органическим веществам в клетке относятся углеводы, белки, липиды и нуклеиновые кислоты. Некоторые из этих соединений синтезируются самой клеткой.

Вода — это неорганическое соединение, которое состоит из водорода и кислорода. Это важное вещество, но в клетке также содержится множество других химических элементов, с которыми мы ознакомимся в таблице ниже.

Таблица. Основные химические элементы в клетках живых организмов

Содержание элемента в процентном соотношенииНазвание элементаЗначение
65%КислородЭтот элемент, очевидно, является самым важным в клетках живых организмов. Атомы кислорода присутствуют в воде, которая является наиболее распространенным веществом в организме, и других соединениях, составляющих ткани. Он также содержится в крови и легких благодаря дыханию
18.6%УглеродУглерод содержится в каждой органической молекуле в организме, а также в побочных продуктах дыхания (углекислый газ). Обычно он попадает в организм вместе с пищей
9.7%ВодородСодержится во всех молекулах воды в организме, а также во многих других соединениях, составляющих различные ткани
3.2%АзотОчень распространен в белках и органических соединениях. Он также присутствует в легких из-за его обилия в атмосфере
1.8%КальцийЯвляется основным компонентом скелетной системы, включая зубы. Он также содержится в нервной системе, мышцах и крови
1.0%ФосфораЭтот элемент распространен в костях и зубах, а также в нуклеиновых кислотах
0.4%КалийКалий содержится в мышцах, нервах и некоторых тканях живых организмов
0.2%НатрийСодержится в мышцах и нервах
0.2%ХлорПрисутствует в коже и облегчает поглощение воды клетками
0.06%МагнийСлужит кофактором для различных ферментов в организме
0.04%СераПрисутствует во многих аминокислотах и белках
0.007%ЖелезоСодержится в основном в крови, облегчает транспортировку кислорода
0.0002%ЙодВстречается в гормонах в щитовидной железе, участвует в обменных процессах

Значение органических соединений в клетке

  • Служат энергией для клеточных процессов
  • Средство накопления энергии
  • Обеспечивают структурную поддержку клеточным стенкам
  • Хранят большое количество энергии в течение длительного периода времени
  • Действуйте как источник энергии
  • Играют важную роль в структуре клеточных мембран
  • Являются источником метаболической воды
  • Сокращают потери воды при испарении
  • Действуют как строительные блоки многих структурных компонентов клетки; необходимы для роста
  • Образуют ферменты, катализирующие химические реакции
  • Образуют гормоны, которые контролируют рост и обмен веществ
  • Содержат генетическую информацию клеток
  • Играют жизненно важную роль в синтезе белка
Читайте также  Как снять радиатор на приоре
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector